Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1.
نویسندگان
چکیده
Previous studies have demonstrated that the neural tube/notochord complex is required for skeletal muscle development within somites. In order to explore the localization of myogenic inducing signals within the neural tube, dorsal or ventral neural tube halves were cultured in contact with single somites or pieces of segmental plate mesoderm. Somites and segmental plates cultured with the dorsal half of the neural tube exhibited 70% and 85% myogenic response rates, as determined by immunostaining for myosin heavy chain. This response was slightly lower than the 100% response to whole neural tube/notochord, but was much greater than the 30% and 10% myogenic response to ventral neural tube with and without notochord. These results demonstrate that the dorsal neural tube emits a potent myogenic inducing signal which accounts for most of the inductive activity of whole neural tube/notochord. However, a role for ventral neural tube/notochord in somite myogenic induction was clearly evident from the larger number of myogenic cells induced when both dorsal neural tube and ventral neural tube/notochord were present. To address the role of a specific dorsal neural tube factor in somite myogenic induction, we tested the ability of Wnt-1-expressing fibroblasts to promote paraxial mesoderm myogenesis in vitro. We found that cells expressing Wnt-1 induced a small number of somite and segmental plate cells to undergo myogenesis. This finding is consistent with the localized dorsal neural tube inductive activity described above, but since the ventral neural tube/notochord also possesses myogenic inductive capacity yet does not express Wnt-1, additional inductive factors are likely involved.
منابع مشابه
Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5.
Activation of myogenesis in newly formed somites is dependent upon signals derived from neighboring tissues, namely axial structures (neural tube and notochord) and dorsal ectoderm. In explants of paraxial mesoderm from mouse embryos, axial structures preferentially activate myogenesis through a Myf5-dependent pathway and dorsal ectoderm preferentially through a MyoD-dependent pathway. Here we ...
متن کاملAntagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle.
Recent studies have postulated that distinct regulatory cascades control myogenic differentiation in the head and the trunk. However, although the tissues and signaling molecules that induce skeletal myogenesis in the trunk have been identified, the source of the signals that trigger skeletal muscle formation in the head remain obscure. Here we show that although myogenesis in the trunk paraxia...
متن کاملActivation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm.
Newly formed somites or unsegmented paraxial mesoderm (UPM) have been cultured either in isolation or with adjacent structures to investigate the influence of these tissues on myogenic differentiation in mammals. The extent of differentiation was easily and accurately quantified by counting the number of beta-galactosidase-positive cells, since mesodermal tissues had been isolated from transgen...
متن کاملWnt signaling and the activation of myogenesis in mammals.
In the amniote embryos, specification of skeletal myoblasts occurs in the paraxial mesoderm in response to a number of signaling molecules produced by neighboring tissues such as neural tube, notochord and dorsal ectoderm. Candidate molecules for this complex signaling activity include Sonic hedgehog, Wnts and Noggin as positive activators and BMP4 as a possible inhibitor. Recently, the recepto...
متن کاملThe homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm.
Siamois, a Xenopus zygotic homeobox gene with strong dorsalising activity, is expressed in the dorsal-vegetal organiser known as the Nieuwkoop centre. We show that, in contrast to Spemann organiser genes such as goosecoid, chordin and noggin, Siamois gene expression is not induced following overexpression of mesoderm inducers in ectodermal (animal cap) cells. However, Siamois is induced by over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 121 11 شماره
صفحات -
تاریخ انتشار 1995